gototopgototop

Мантия и ядро Земли

Земная кора имеет довольно четко выраженную границу с подстилающей мантией. Скорость сейсмических волн выше этой границы не превышает 7,1—7,4 км/с, тогда как ниже она увеличивается до 8,2 км/с. Эта поверхность раздела была открыта в 1910 году югославским геофизиком А. Мохоровичичем при изучении землетрясения в Хорватии. Впоследствии подошва земной коры получила название границы Мохоровичича, или Мохо. Ниже нее до глубины 2900 км располагается мантия Земли. Плотность вещества мантии больше плотности пород земной коры и колеблется от 3,3 г/см3 в верхней части до 6—9 г/см3 в низах мантии. В соответствии с этим скорость распространения упругих колебаний возрастает до 13,6 км/с. Однако нарастание скорости идет неравномерно. Оно значительно быстрее в верхней части мантии (до глубин 900—1000 км) и очень медленное, постепенное на больших глубинах. В связи с этим мантию делят на внешнюю и внутреннюю. Граница между ними лежит на глубине 900 км.

Внешняя мантия изучена лучше внутренней. Но и в отношении ее многое еще неясно. В частности, большие споры вызывает химический состав внешней мантии. Одни ученые считают, что она сложена перидотитом — магматической породой, состоящей из оливина с примесью кремнезема. Другие предполагают, что внешняя мантия значительно богаче кремнеземом и по своему составу соответствует базальту, но с более плотной «упаковкой» атомов и, следовательно, с большей плотностью, чем обычный базальт. Такой глубинный базальт получил название эклогита. Достоверно ни в одной точке нашей планеты породы мантии не обнажаются, они перекрыты земной корой и не достигаемы пока даже при сверхглубоком бурении.

Характерной чертой строения внешней мантии является ее расслоенность, что устанавливается геофизическими методами. На глубине около 100 километров под материками и около 50 километров под океанами ниже подошвы земной коры находится слой мантии, установленный немецким геофизиком Б. Гутенбергом в 1914 году. Скорость распространения упругих колебаний в нем резко снижается, что свидетельствует о размягченном состоянии вещества.

Предполагают, что оно находится здесь в твердожидком состоянии, когда гранулы твердого вещества окружены пленкой расплава. Этот слой получил название астеносферы (ослабленный слой), или слоя Гутенберга. Возникновение астеносферы можно объяснить более быстрым нарастанием с глубиной температуры, чем параллельное увеличение давления, что и приводит к массовому равномерно рассеянному частичному плавлению породы. По мнению австралийского ученого А. Е. Рингвуда, в расплавленном состоянии здесь находится от 1 до 10% вещества.

Выше астеносферы породы мантии находятся в твердом состоянии, образуя совместно с земной корой литосферу, то есть каменную оболочку Земли. Ниже астеносферы, на глубине примерно 400 км под океанами и 250 км под континентами, располагается слой Голицына, названный так в честь русского ученого Б. Б. Голицына, впервые указавшего на существование этого слоя. Для него характерно возрастание плотности вещества и соответственное увеличение скорости распространения сейсмических волн. Предполагают, что слой Голицына состоит из сверхплотных разновидностей кремнезема и силикатов. Опытным путем было доказано, что при больших давлениях и температурах кремнезем уплотняется, образуя новые минералы с очень плотной упаковкой атомов. Так, в лабораторных условиях из кремния удалось получить при давлении в 145000 атмосфер и температуре 1400° С минерал с плотностью 4,35 г/см3.

Внутренняя мантия, располагающаяся в интервале глубин от 900 до 2900 км, характеризуется большей плотностью вещества и большей скоростью распространения упругих колебаний, чем внешняя. Предполагают, что внутренняя мантия Земли состоит из силикатов, обогащенных железом и магнием. Возможно, что здесь широкое развитие получили сульфиды железа.

Ядро Земли охватывает всю внутреннюю область планеты с глубины 2900 км. Важнейшей особенностью ядра является снижение скорости прохождения сквозь него сейсмических волн. На основании этого делается вывод о жидком состоянии вещества ядра. По-видимому, оно напоминает густой, вязкий материал, близкий к твердому, но все же гораздо более текучий, чем субстанция внутренней мантии. С глубины 5000—5200 километров, скорость сейсмических волн возрастает. Это послужило основанием для датского исследователя И. Леманна в 1936 году, разделить ядро на внешнее и внутреннее. Весьма вероятно, что материал внешнего ядра находится в вязком состоянии, подобно веществу астеносферы, а внутреннего — в твердом состоянии. Плотность пород ядра достигает 13 г/см3.

О химическом составе ядра Земли существуют два основных мнения. Одни исследователи считают ядро железным, состоящим из никеля и железа («нифе» по Э. Зюссу). Другие же считают, что оно сложено силикатами, которые находятся в «металлизированном» состоянии. Предполагают, что под влиянием огромного давления в недрах Земли (до 3 миллионов атмосфер) атомы силикатов частично разрушились, от них оторвались отдельные электроны и произошло уплотнение вещества. Однако эксперименты последних лет не обнаружили металлизацию силикатов вплоть до давлений 5 миллионов атмосфер. Тем самым предположение о силикатном металлизированном ядре Земли поставлено под большое сомнение. Сейчас начинает преобладать промежуточная точка зрения, согласно которой внутреннее ядро — железно-никелевое, а внешнее - сложено сверхплотными силикатами.

В двадцатом веке геологи и геохимики Корнеллского университета (США) выступили с сенсационным заявлением. Они утверждали, что ими на поверхности Земли обнаружен новый минерал, который, по их мнению, каким-то образом был вынесен из внешнего ядра. Структура минерала, его плотность и химический состав говорят за это. В лабораториях университета выяснили, что минерал на 86% состоит из металлов, а на 14% из силикатов. Металлическая фракция сложена никелем (69,9%) и железом (30,1%). Минерал был найден в обломках гравия в горах штата Орегон. Его назвали джозефинитом.

 
Сейчас 2 гостей онлайн
Joomla 1.5 Templates by JoomlaShine.com
Смотрите на сайте печать на металле.